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Abstract

A systematic method is presented for describing experimental curves of force vs strain of a system with
regular polygonal "dihedral group# symmetry subject to bifurcation behavior\ with an aim toward over!
coming the following problems ] "0# it is di.cult to judge whether the system is undergoing bifurcation or
not ^ "1# the perfect behavior of the system cannot be known due to the presence of initial imperfections ^
"2# those curves are often qualitatively di}erent from bifurcation diagrams predicted by mathematics[ The
tools employed are ] the asymptotic theory for imperfect bifurcation\ such as the Koiter law\ and the
stochastic theory of initial imperfections[ The former theory is extended in this paper to the system with
regular!polygonal symmetry to present asymptotic laws for recovering perfect curves with reference to the
experimental ones[ These laws are formulated for physically observable displacements\ instead of the
variables in the mathematical bifurcation diagrams\ in order to make them readily applicable to the
experimental curves[ The stochastic theory is combined with an asymptotic law to develop a means to
identify the multiplicity of the bifurcation point[ The systematic method for describing the experimental
curves developed in this manner is applied to the bifurcation analysis of regular!polygonal truss domes to
testify its validity[ Furthermore\ this method is applied to the shear behavior of cylindrical sand specimens
to show that they\ in fact\ are undergoing bifurcation\ and\ in turn\ to demonstrate the importance of a
viewpoint of bifurcation in the study of shear behavior of materials[ The need of a dual viewpoint of
bifurcation and plasticity in the study of constitutive relationship of materials is emphasized to conclude the
paper[ Þ Elsevier Science Ltd[ All rights reserved[

0[ Introduction

Bifurcation theories have been established to a high level of perfection[ For bifurcation of perfect
systems\ Thompson and Hunt "0862# employed the elimination of passive coordinates to categorize
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simple critical points[ The theory of plastic bifurcation was developed by Hill and Hutchinson
"0864#[ The group!theoretic bifurcation theory is a standard procedure to describe perfect bifur!
cation behavior of symmetric systems\ for which multiple bifurcation points appear generically
"e[g[\ Ruelle\ 0862 ^ Sattinger\ 0868 ^ Golubitsky et al[\ 0877#[

For bifurcation of imperfect systems\ Koiter "0834# found the two!thirds power law for imper!
fection sensitivity to describe the in~uence of initial imperfections[ The catastrophe theory was
developed by Thom "0861#\ and the equivariant universal unfolding was introduced "e[g[\ Golu!
bitsky et al[\ 0877# so as to describe the qualitative in~uence of initial imperfections[ The notion
of group!equivariance was extended to incorporate the symmetry of initial imperfections "Murota
and Ikeda\ 0880#\ and a stochastic theory of initial imperfection sensitivity was developed to
describe the experimental scatter of maximum loads "Murota and Ikeda\ 0881 ^ Ikeda and Murota\
0882#[

Owing to the aforementioned and other theories on bifurcation\ {analytical| or {computational|
analyses of structures and materials subject to perfect and imperfect bifurcation have been carried
out in a complete and systematic manner\ and led to a series of successful studies[ See\ e[g[\ Ziegler
"0857#\ Thompson and Hunt "0862\ 0873#\ and Ben!Haim and Elishako} "0889# and references
therein for elastic bifurcation of structures ^ see e[g[\ Hutchinson and Miles "0863#\ Rudnicki and
Rice "0864#\ and Vardoulakis "0877# for plastic bifurcation of materials[

The imperfection sensitive reduction of the strength of shells observed in experiments was
successfully explained by the Koiter law "0834#[ Yet there may still be a gap between the math!
ematical theory and the engineering practice in the {experiment| of materials subject to bifurcation[
Such a gap may be ascribed to the following three essential di.culties ]

"0# It is di.cult to judge\ merely from the observed curves\ whether the system under consideration
is subject to bifurcation behavior or not[

"1# Experimentally observed displacements are under the in~uence of various kinds of initial
imperfections\ and the perfect system cannot be known[

"2# Observed force vs displacements can be qualitatively di}erent from bifurcation diagrams
predicted by mathematics[

Owing to the _rst di.culty\ it is customary to ascribe the softening of force vs displacement curves
of materials solely to plasticity\ while it may possibly be a consequence of imperfect bifurcation\
or\ of the mixed presence of plasticity and bifurcation[ In order to overcome the second di.culty\
e}orts have been made to reduce the errors in experiments[ A few remarks are given below for the
third di.culty[ The bifurcation diagram\ which is an interrelationship between an independent
variable and a bifurcation parameter\ is often employed in the mathematical description of bifur!
cation behavior[ The in~uence of initial imperfections on this diagram in the neighborhood of a
bifurcation point has fully been investigated in the foregoing references[ This independent variable\
however\ is not necessarily related to a physically observable variable[ If an observable one is
employed as the abscissa of a diagram in summarizing experimental data\ a resulting curve can be
qualitatively di}erent from that bifurcation diagram[ Such discrepancy is often due to the geometric
symmetry of a system under consideration[

In order to overcome those three di.culties\ it is highly desirable to develop a strategy to
eliminate or mitigate the in~uence of bifurcation from the experimental curves\ and hence to arrive
at the {true| constitutive relationship[ More speci_c questions to be answered in this paper are ]
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"0# Can we construct the curve for the perfect system with reference to a single or a number of
experimental curves<

"1# Can we explain the experimental curves as imperfect bifurcation phenomena<

Clues to answer these questions have already been cited above\ that is\ the Koiter law and the
stochastic theory of initial imperfection sensitivity[ In this paper\ we generalize the Koiter law\
which yields information only on the limit point of an imperfect curve\ to arrive at asymptotic
laws on imperfection sensitivity that can o}er information on the whole curve[ The extension is
made with respect to the following three aspects ]

"0# applicability to experimentally observable displacements\
"1# the robustness against experimental errors\ and
"2# applicability to double bifurcation points[

The implementation of the _rst and the second aspects\ which are mandatory in the application to
experimental curves\ is performed through the re_nement of a series of references ] Ikeda and Goto
"0882# and Ikeda et al[ "0886a\ b#[ The implementation of the third aspect is necessitated in dealing
with symmetric systems\ such as\ dome structures\ cylindrical soil or concrete specimens[ This is
based on Murota and Ikeda "0880#[

Through a combination of {the asymptotic laws| extended in this manner with the {stochastic
theory of imperfection sensitivity|\ we present a systematic procedure to describe imperfect bifur!
cation behavior of a system with regular!polygonal "dihedral group# symmetry[ The bifurcation
equation is derived by means of a standard procedure of the elimination of passive coordinates\ or\
the Liapunov!Schmidt reduction\ exploiting the dihedral group symmetry[ Then the independent
variable"s# of this equation is transformed into a physically observable displacement\ which is
classi_ed into two types ] that with symmetry and that without it[ For each type of displacement\
the explicit form of a force vs displacement curve and a pertinent power law are derived[ In
particular\ a power law for a physically observable displacement for double eigenvalues serves as
an essential contribution of this paper[ A combination of the stochastic method and the generalized
Koiter law is presented as a means to identify the multiplicity of a bifurcation point[ As a result
of these\ we present a systematic strategy to recover the curve of an imperfect system\ and hence
to judge if the bifurcation is actually taking place or not[ This strategy is applied to the numerical
analyses of regular!polygonal truss domes to testify its validity[ Furthermore\ it is applied to the
shear behavior of cylindrical sand specimens to reveal that they\ in fact\ are undergoing bifurcation\
and\ in turn\ to demonstrate the importance of a viewpoint of bifurcation in the future study of
the shear behavior of materials[

1[ Imperfection sensitivity laws

A series of imperfection sensitivity laws for describing experimental force vs displacement curves
subject to imperfect bifurcation behavior are introduced through the extension and reorganization
of the results of Ikeda et al[ "0886b# to a system with regular!polygonal symmetry[
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1[0[ Formulation

We consider a system of nonlinear equilibrium equations

F"u\ f\ v# � 9\ "0#

where u $ RN is a displacement "or position# vector\ f $ R a loading parameter\ v $ Rp an imperfection
parameter vector\ F a su.ciently smooth "e[g[\ analytic# nonlinear function in u\ f\ and v ^ N is the
number of degrees of freedom and p the number of imperfection parameters[

For a _xed v\ the solutions "u\ f # of the above system of equations make up equilibrium paths[
Let "uc\ fc# �"uc"v#\ fc"v## denote a critical point of the system described by v "the subscript "=#c

refers to the critical point#[ The Jacobian "tangent sti}ness# matrix J � 1F:1u is singular at "uc\ fc#
and\ in particular\ at the critical point "u9

c \ f 9
c # �"uc"v9#\ fc"v9## of the perfect system[ Here the

superscript "=#9 refers to the perfect system described by v � v9[ We put

u � u9
c ¦u½\ uc � u9

c ¦u½c\

f � f 9
c ¦f½\ fc � f 9

c ¦f½c\ "1#

where u½ and u½c mean the increments of the displacement and the critical displacement\ respectively\
from u9

c for the critical point of the perfect system\ and f½ and f½c the increments of the load and the
critical load\ respectively[ To distinguish the mode and the magnitude of an imperfection\ we write

v � v9¦od "2#

with a scalar nonnegative parameter o and an imperfection mode vector d $ Rp[
By imperfection sensitivity we mean the dependence of relevant quantities\ such as f½c\ on o and:or

d[ Most of the arguments of this paper are asymptotic in the sense that they are valid only when o

is su.ciently small[

1[1[ Koiter|s two!thirds power law

For an unstable\ simple\ symmetric "pitchfork!type# point "u9
c \ f 9

c # of bifurcation\ the system "0#
of equations can be reduced to a single bifurcation equation

A009wf½¦A299w
2¦A990o¦h[o[t[ � 9 "3#

in a single variable w $ R\ where h[o[t[ means a higher order term that can be ignored as o tends to
zero\ and A009\ A299\ and A990 are constants "A990 depends on the imperfection mode d#[ This
equation is valid in the vicinity of the bifurcation point "u9

c \ f 9
c #\ that is\ "w\ f½\ o# �"9\ 9\ 9# for

su.ciently small o[ Because this point is assumed to be unstable\ we have A009A299 × 9 for this case[
The imperfect system described by eqn "3# with o � 9 has a limit point\ as depicted in Fig[ 0\

and the location "wc\ f½c# of this limit point is calculated as

wc � 0
A990

1A2991
0:2

o0:2¦h[o[t[\ "4#
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Fig[ 0[ Koiter|s two!thirds power law and the asymptotic relation "6#[ "*# denotes a curve for an imperfect system\
"! ! !# indicates that for the perfect one\ "Ð ! ! Ð# indicates the parabola "6#\ "�# stands for the bifurcation point of the
perfect one\ and "ž# for a limit point of an imperfect one[

f½c � −bo1:2¦h[o[t[\ b �
2A0:2

299A
1:2
990

11:2A009

\ "5#

where b is a constant independent of o[ Equation "5# is the famous Koiter|s two!thirds power law\
which serves as a prototype of imperfection sensitivity laws[

On eliminating o from eqns "4# and "5#\ we obtain an asymptotic relation

f½c¦`Kw1
c � 9 "6#

with `K � 2A299:A009 × 9[ It is important that `K is a constant independent of the imperfection
mode d\ whereas A990 does depend on d[ The relation "6# is illustrated in Fig[ 0 by a series of "=#
threaded with a dottedÐdashed line[ This relation "6# can potentially be useful for a treatment
of imperfection sensitive bifurcation behavior\ but in its present form it su}ers from serious
drawbacks ]

"0# The variable w is more mathematical than it is physical\ and as a consequence\ the critical
displacement wc is not always observed "or observable# in experiments[ Note that the variable
w is introduced in the course of mathematical reduction to obtain the bifurcation equation[ It
is not an f vs w curve but an f vs ui� one "with a particular i�# that is to be acquired in customary
experiments[

"1# Even if the variable w is observed\ the value of wc must be determined by identifying the limit
point of an observed equilibrium path\ which is necessarily blurred due to various noises and
errors in numerical analyses and physical experiments[ In such situations the values of wc\
being the abscissa of the limit point\ cannot be determined in a reliable manner\ whereas the
value of fc\ the ordinate of the limit point\ is relatively easy to determine[

1[2[ Generalized imperfection sensitivity law

Generalizing the relation "6# for the Koiter law\ we consider a parabola

f½¦`w1 � 9 "7#
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Fig[ 1[ Generalization of the Koiter law and the parabola "7#[ "a# Unstable\ simple\ symmetric bifurcation point[ "b#
Stable\ simple\ symmetric bifurcation point[ "*# denotes a curve for an imperfect system\ "! ! !# indicates that for the
perfect one\ the dottedÐdashed one "Ð ! ! Ð# stands for the parabola "7#\ "�# for the bifurcation point of the perfect one\
and "e# for the intersection point of the parabola and an imperfect path[

with an arbitrary constant ` shown by the dottedÐdashed line in Fig[ 1\ and its intersection point
"w+` \ f½+`# with the imperfect path\ shown by "e#[ The substitution of eqn "7# for the parabola
into the bifurcation eqn "3# yields

w+` � 0
A990

`A009−A2991
0:2

o0:2¦h[o[t[ "8#

The combination of this expression with eqn "5# for f½c yields

f½c � −
2A0:2

299"`A009−A299#1:2

11:2A009

"w+`#1¦h[o[t[\ "09#

which shows that f½c is proportional to "w+`#1 asymptotically as o : 9[ Note that the coe.cient of
proporitonality\ being independent of A990\ is a constant independent of the imperfection mode d\
while it is remarked in this connection that the coe.cient b in eqn "5# depends on d[

The expression "09# gives an asymptotic relation between coordinates of two distinct points\
namely\ the ordinate f½c of the limit point "wc\ f½c# of an imperfect system and the abscissa w+` of the
intersection point "w+`\ f½+`#[ The asymptotic law "09# has an advantage that w+` can be determined
much more reliably than wc[ Thus\ the introduction of the general parabola "7# resolves the second
drawback of the original relation "6# of the Koiter law mentioned at the end of Section 1[1[ The
law "09# has another advantage over the original relation "6#[ As can be seen from Fig[ 1\ the
intersection point exists both for stable! and unstable!symmetric bifurcation points\ and hence the
generalized law "09# is applicable to both types of points\ whereas the Koiter law yields physically
meaningful information only for an unstable point of bifurcation[

Next\ we address the _rst problem with eqn "6# of the Koiter law concerning the observability
of wc in the experiment\ and shall further improve the asymptotic law "09#[ Namely\ we aim at an
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asymptotic law\ as well as the bifurcation equation\ expressed in terms of an observable variable
ui� with a particular i�[

With reference to the bifurcation point "u9
c \ f 9

c #\ we choose a set of N "orthonormal# vectors
"hi = i � 0\ [ [ [ \ N# such that

J9h0 � o ^ J9hi � o\ i � 1\ [ [ [ \ N\

that is\ h0 corresponds to the critical eigenvector of the Jacobian matrix J9 � J"u9
c \ f 9

c \ v9# at
"u9

c \ f 9
c # for v � v9[ We express the displacement u as

u � u9
c ¦ s

N

j�0

wjhj

in terms of incremental variables "wj = j � 0\ [ [ [ \ N#[
By a standard procedure called the {elimination of passive coordinates|\ or\ the LiapunovÐ

Schmidt reduction "see the Appendix#\ we can obtain the bifurcation eqn "3# for the variable
w � w0 ]

F
0"w\ f½\ o# � A009wf½¦A299w
2¦A990o¦h[o[t[ � 9\ "00#

and the remaining equations for the passive coordinates wi "i � 1\ [ [ [ \ N# ]

F
i"w\ f½\ o# � eiwi¦aif½¦bio¦ciw
1¦h[o[t[ � 9\ "01#

where Aijk|s are coe.cients\ ei is the ith eigenvalue of J9 and ai\ bi and ci are constants[ It turns out
that

w � O"o0:2# ^ wi � O"o1:2#\ i � 1\ [ [ [ \ N ^ f½� O"o1:2#

"O"=# denotes the order of the term therein#[
In order to arrive at an explicit form of the f vs ui� curve\ we express u½i� 0 ui�−"ui�#9

c with a
particular i � i� in terms of w and f½ through the substitution of eqn "01# for the passive coordinates
into eqn "00#\ that is\

u½i� � s
N

j�0

hi�jwj � hi�0w¦ri�f½¦si�w
1¦h[o[t[\ "02#

where the term of o in eqn "01# has been omitted in this equation as it is a higher order term ^ hi�j

is the i�th component of hj �"h0j\ [ [ [ \ hNj#T ^ and

ri� � − s
N

j�1

hi�jaj

ej

\ si� � − s
N

j�1

hi�jcj

ej

are some constants[ We write u½ � u½i�\ r � ri� and s � si� for brevity[
As can be seen from eqn "02#\ the properties of u½ can be categorized with reference to the

vanishing and non!vanishing of the coe.cient hi�0 of w\ that is\

6
u½ � O"w# if hi�0 � 9\

u½ � O"w1# if hi�0 � 9[
"03#
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The latter case "hi�0 � 9# can occur not only by an accidental numerical cancellation but also
generically as a consequence of group symmetry\ if the displacement ui� is invariant under the
geometric transformation that corresponds to w : −w "see Section 1[3 and the Appendix#[ In
fact\ this case often takes place in experiments\ and hence is a primary concern of this paper[

1[2[0[ Displacement ui� without symmetry "hi�0 � 9#
For a general displacement ui� without particular symmetry "hi�0 � 9#\ our preliminary con!

siderations leading to the asymptotic law "09# need only marginal modi_cations[ Equation "02# is
solved for w as

w �
0

hi�0 0u½−
f½

E1¦h[o[t[ "04#

The substitution of eqn "04# into eqn "00# yields the asymptotic expression

0u½−
f½

E1 f½¦p� 0u½−
f½

E1
2

¦q�o¦h[o[t[ � 9\ "05#

for the curve of an imperfect system\ where

p� �
A299

h1
i�0A009

\ q� �
hi�0A990

A009

[

Note that p� is a constant associated with the curvature of the bifurcation path and q� is a scaling
factor\ depending on the imperfection mode d\ of the magnitude o of the initial imperfection[
General views of the perfect and imperfect paths expressed by eqn "05# are depicted in Fig[ 2"a#[

Instead of the parabola "7# in the "w\ f½#!plane\ we consider a parabola

f½¦`u½1 � 9 "06#

Fig[ 2[ General views of force vs displacement curves in the vicinity of an unstable\ simple\ symmetric bifurcation point[
"a# Nonsymmetric "non!Dn!invariant# displacement with hi�0 � 9[ "b# Symmetric "Dn!invariant# displacement with
hi�0 � 9[ "*# denotes a curve for an imperfect system\ "! ! !# indicates that for the perfect one\ "�# is the bifurcation
point of the perfect one\ "ž# is a limit point of an imperfect one\ "e# is the intersection point of the straight line with
an imperfect one\ and "r# that of the parabola with an imperfect one[
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in the "u½\ f½ #!plane "where ` is a constant#\ shown by the dottedÐdashed line in Fig[ 2"a# and its
intersection point "u½+`\ f½+`#\ shown as "e#\ with the imperfect f½ vs u½ curve[ The substituting of eqn
"06# into eqn "05# and the omitting of higher order terms lead to

u½+` � 0
q�

`−p�1
0:2

o0:2¦h[o[t[ � 0
h2

i�0A990

`h1
hi�0A009−A2991

0:2

o0:2¦h[o[t[ "07#

The eliminating of o from eqn "07# and the Koiter law "5# yields a power law

f½c � −
2"p�#0:2"`−p�#1:2

11:2
"u½+`#1¦h[o[t[

� −
2A0:2

299"`A	009−A299#1:2

11:2A	009

"u½+`#1¦h[o[t[\ "08#

where A	009 � hi�A009[ As expected\ the law "08# is qualitatively identical with eqn "09#[

1[2[1[ Displacement ui� with symmetry "hi�0 � 9#
For a symmetric displacement ui� with hi�0 � 9\ the asymptotic relation "09# and the bifurcation

eqn "00# take qualitatively di}erent forms[ Equation "02# becomes ]

u½ � rf½¦sw1¦h[o[t[ "19#

On eliminating w from eqns "00# and "19#\ we obtain

X sign"s# 0u½−
f½

E1 $f½¦p 0u½−
f½

E1%2qo¦h[o[t[ � 9\ "10#

with an inequality condition

sign"s# 0u½−
f½

E1− 9[ "11#

Here sign "s# denotes the sign of s and E � 0:r denotes the tangent of the main path for the perfect
system "o � 9#\ which is associated with the trivial solution w � 9\ and p and q are parameters\
being de_ned as ]

p �
A299

sA009

\ q �
A990 =s=0:1

A009

[ "12#

With this notation\ the Koiter law "5# is written as

f½c � −sign"s#
2p

0:2q1:2

11:2
o1:2¦h[o[t[ "13#

By putting o � 9 in eqn "10# we obtain
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F

G

j

J

G

f

u½−
f½

E
¦h[o[t � 9 on main path\

f½¦p 0u½−
f½

E1¦h[o[t[ � 9\ sign"s# 0u½−
f½

E1− 9 on bifurcation path\
"14#

for the equilibrium of the perfect system[ Owing to the inequality condition\ the bifurcation path
expressed by eqn "14# branches toward only one direction from the bifurcation point[ This is a
qualitative change from the pitchfork!type diagram[

For an imperfect system\ it should be remarked that the inequality condition "11# indicates that
all imperfect paths exist only on one side of the main path ^ the side depends on the sign of s[ For
a speci_ed value of o\ 2 in eqn "10# corresponds to a pair of imperfect paths ^ ¦ is associated with
a path above the bifurcation path and − with another path below it\ or\ vice versa ðcf Fig[ 2"b#Ł[

Instead of a parabola we now consider a straight line

f½¦hu½ � 9 "15#

"where h is a constant# shown by the dashed!and!dotted line in Fig[ 2"b#\ and its intersection point
"u½ =h\ f½=h#\ as shown as "r#\ with the imperfect f½ vs u½ curve[ A substitution of eqn "15# of the straight
line into eqn "10# results in

u½ =h � go1:2¦h[o[t[\ "16#

where

g �
q1:2

sign"s# 00¦
h
E1

0:2

$−h¦p 00¦
h
E1%

1:2
[

The elimination of the imperfection magnitude o from the Koiter law "13# and the expression "16#
leads to a generalized asymptotic law

f½c � −g�u½ =h¦h[o[t[ "17#

with

g� �
2

11:2 $p 00¦
h
E1%

0:2

$−h¦p 00¦
h
E1%

1:2

[ "18#

This denotes a linear relationship between a pair of physically observable variables u½ =h and f½c that
passes the origin "u½ =h\ f½c# �"9\ 9#[ Namely\ "u½ =h\ f½c# for di}erent values of o all lie on the line "17#
with a common slope −g�[ It is emphasized that the coe.cient g� is independent of the imperfection
mode d\ whereas g is not[

1[3[ Extension to systems of re`ular!poly`onal symmetry

In this subsection\ we present the outline of the bifurcation of a system with the dihedral group
symmetry\ and the applicability of the asymptotic laws presented in Sections 1[1 and 1[2 to this
system\ whereas details are worked out in the Appendix[



K[ Ikeda\ K[ Murota:International Journal of Solids and Structures 25 "0888# 0450Ð0485 0460

Qualitative aspects of bifurcation of symmetric systems have successfully been described by a
standard strategy\ called the group!theoretic bifurcation theory "see\ e[g[\ Sattinger\ 0868 ^ Golu!
bitsky and Stewart\ 0875 ^ Golubitsky et al[\ 0877#[ The symmetry of the system under consideration
is formulated as the equivariance to a group G[ The symmetry of a bifurcated solution is char!
acterized by a subgroup G0 of G[ Namely\ the symmetry of the solution is reduced at the onset of
bifurcation\ which is characterized by the change in symmetry ] G : G0[

To describe the symmetry of a regular!polygonal symmetry\ we set the group G to be the dihedral
group Dn of degree n de_ned by

Dn � "c"1pk:n#\ sc"1pk:n# = k � 9\ 0\ [ [ [ \ n−0#

with c"1p# � s1 �"sc"p##1 � e[ Here e denotes the unit transformation\ c"u# represents a rotation
around the Z!axis through an angle of u\ and s represents a re~ection with respect to the YZ!
plane[ The subgroups of Dn are enumerated by

"Dj
m = j � 0\ [ [ [ \ n:m ^ m divides n# and "Cm = m divides n#\

where

Dj
m � "c"1pk:m#\ sc"1pð" j−0#:n¦k:mŁ# = k � 9\ 0\ [ [ [ \ m−0# ^

Cm � "c"1pk:m# = k � 9\ 0\ [ [ [ \ m−0#[ "29#

The bifurcation of a system with the dihedral group symmetry has been studied extensively "e[g[\
Fujii et al[\ 0871 ^ Golubitsky and Stewart\ 0875 ^ Golubitsky et al[\ 0877 ^ Buzano et al[\ 0877 ^
Healey\ 0877 ^ Ikeda et al[\ 0880 ^ Gatermann\ 0882#[ We consider the bifurcation points on the
fundamental equilibrium path of a Dn− symmetric system that are generically either simple or
double point of bifurcation according to whether the dimension of the kernel of the Jacobian J9

c

is equal to one or two[

1[3[0[ Simple bifurcation point
At a simple bifurcation point\ the symmetry of the critical eigenvector for the kernel of the

Jacobian J9
c is labeled by ] Cn\ Dn:1 or D1

n:1[ In each case\ the bifurcation equation is expressed as
the form of eqn "00# and the remaining equations as the form of eqn "01#[ All the formulas
presented in Sections 1[1 and 1[2 are applicable to a simple bifurcation point of a Dn!symmetric
system[ The symmetry of an observed variable ui�\ to be precise\ can be characterized by Dn!
invariance of ui�[

1[3[1[ Double bifurcation point
Double bifurcation points on a Dn!symmetric fundamental path can be further classi_ed in view

of the symmetry of a pair of critical eigenvectors of J9
c [ At a double bifurcation point\ these vectors

are both Cm!symmetric "though an appropriate superposition of these vectors can be
Dj

m!symmetric#\ where m is an integer that divides n and satis_es n:m − 2[ We call n¼ � n:m the
{index| of the double point[ The index n¼ is indeed an important parameter in that it characterizes
the laws for imperfection sensitivity as follows "cf Murota and Ikeda\ 0881# ]
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f½c ½ 8
C"c# =a=0:1o0:1 if n¼ � 2\

C"c# =a=1:2o1:2 if n¼ � 3\

C9 =a=1:2o1:2 if n¼ − 4\

where a � a"d# � =a= exp"ic# is a complex variable expressing the in~uence of imperfection pattern
vector d and C9 is a constant independent of d[ The index n¼ also characterizes the explicit form of
the equilibrium path of an imperfect system[

If n¼ − 4\ the equilibrium path of an imperfect system can be represented by

rf½¦r2−=a=o � 9 "20#

in terms of r � zw1
0¦w1

1\ where "w0\ w1# is the orthonormal coordinates of the two!dimensional
kernel space of J9[ Moreover\ for a Dn!invariant displacement ui�\ the increment u½ 0 ui�−"ui�#9

c is
expressed as

u½ � Ri�f½¦Si�r
1¦h[o[t[\ "21#

where Ri� and Si� are constants[ Note that eqn "21# is exactly of the same form as eqn "19# for a
symmetric displacement of a simple\ symmetric bifurcation point with hi�0 � 9[ In addition\ recall
that the bifurcation eqn "20# is of the same form as eqn "00# for the simple point[ As a consequence
of these\ all the results presented in Section 1[2[1 for a symmetric displacement for a simple point
apply to a symmetric one for a double point with n¼ − 4 as well[ In particular\ a straight line
f½¦hu½ � 9 should be employed and then a linear relationship "17# between u½ =h and f½c holds good
asymptotically[ It should be emphasized here that when n¼ � 2 or 3\ or when ui� is not Dn!invariant\
these results are not applicable[

2[ Recovering perfect systems from imperfect system behaviors

As was mentioned in the introduction\ a di.culty in the interpretation of experimental curves
subject to bifurcation behavior lies in the fact that the curve for the perfect system is unknown[ In
order to resolve this di.culty\ a systematic procedure is presented in this section for recovering
the perfect curve with reference to experimental curves[ We assume the presence of a unique perfect
system and its unique bifurcation point[ We further assume the absence of the mode switching
behavior and recursive bifurcation behavior among a few bifurcation modes[ See Ikeda and Murota
"0886# and Ikeda et al[ "0886b# for a systematic procedure to sort out these behaviors[

At the _rst step of the recovering of the perfect curve\ the symmetry of the displacement u � ui�

under consideration is to be investigated[ For a displacement without symmetry\ the formulas in
Section 1[2[0 are to be employed\ while for a symmetric displacement are those in Section 1[2[1[
We focus on the symmetric displacement in the remainder of this section in presenting a procedure
for recovering the perfect behavior\ whereas a procedure of that without symmetry can be obtained
simply by replacing relevant formulas[ It should be emphasized here that for such a symmetric
displacement the formulas for a simple\ symmetric bifurcation point and those for a double one
are identical[
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2[0[ Recovery from a sin`le imperfect path

The values of the parameters needed in recovering the perfect curve in the plane of "u\ f # consist
of the location "u9

c \ f 9
c # of the bifurcation point and the parameters p and E in eqn "14#\ whereas

the values of qo in eqn "10# is needed in the simulation of the experimental "imperfect# curve[ The
information to be extracted from a single experimental curve is the location u½ =h of the intersection
point of the straight line "15# with the experimental curve for di}erent values of h\ where the
{origin| "u9

c \ f 9
c # is unknown[ This is based on the fact that the law "17# holds for any values of h\

say "hi = i � 0\ 1\ [ [ [#[
Among other possibilities\ the following procedure may be suggested[ Assume the location

"u9
c \ f 9

c # of the bifurcation point[ If we employ four di}erent values of h say "hi = i � 0\ 1\ 2\ 3#\ we
can estimate p and E on the basis of eqn "17# with eqn "18# from the observed values of u½ =h[ To be
concrete\ for two di}erent values hi and hj\ eqn "17# with eqn "18# yields

0
u½ =hj

u½ =hi1
2

�
hi

hj 0
−hi¦phi

−hj¦phj1
1

\ "i\ j# �"0\ 1#\"2\ 3#\

where

hi � 0¦
hi

E
\ i � 0\ 1\ 2\ 3[

We can solve this equation to arrive at an explicit expression of p ]

p �
h0−r01h1

h0−r01h1

�
h2−r23h3

h2−r23h3

\ "22#

where

rij � 2X
hj

hi 0
u½ =hj

u½ =hi1
2

\ "i\ j# �"0\ 1#\"2\ 3#[

The value of E is to be determined from eqn "22# by some iterative numerical method[ Equation
"22# can have more than one root "solution#[ It is suggested that we may observe the physical
plausibility of E\ which is equal to the tangent of the main path\ to select the appropriate one\ and
then the value of p is to be determined uniquely by eqn "22#[

With the use of a few sets of four di}erent values of hi "i � 0\ 1\ 2\ 3#\ we can arrive at as many
di}erent estimates of E\ say "Ei = i � 0\ 1\ [ [ [#[ Then the location "u9

c \ f 9
c # can be determined as a

point where the variance among "Ei = i � 0\ 1\ [ [ [# is minimized[ Then eqns "16# and "13#\ respec!
tively\ yield the following pair of expressions of qo ]

qo � 2$sign"s# 00¦
h
E1 $−h¦p 00¦

h
E1%

1

"u½ =h#2%
0:1

� 2$−
3
16

sign"s#
0
p
" f½c#2%

0:1

[ "23#
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The values of all the parameters in the asymptotic force vs displacement curve "10#\ accordingly\
can be obtained in a systematic manner[ It is to be emphasized that the present procedure with
eqn "23# is quite robust and applicable in the case where the peak of an experimental case is missing
and hence f½c cannot be observed ^ such is often the case with the materials subject to a sudden
rupture or a failure by cracking[

2[1[ Recovery from a series of imperfect paths

When multiple experimental curves undergoing bifurcation with presumably the same bifur!
cation point but with di}erent values of initial imperfections are considered\ we may use the
following method proposed by Ikeda et al[ "0886b# that is quite robust against experimental errors
to determine the location of the bifurcation point and the values of the parameters[

First\ the symmetry of the displacement under consideration is to be investigated[ Next the
location of the bifurcation point may be determined using a single value of h by repeating the
following ]

"0# Assume the location "u9
c \ f 9

c # of the bifurcation point\ shown as "�# in Fig[ 2"b#\ and obtain
the incremental displacements u½ =h at the intersection points\ shown as "r#\ of the straight line
f½¦hu½ � 9 with the experimental f vs u curves[ Then plot f½c against u½ =h for all curves[

"1# Modify the location "u9
c \ f 9

c # so that the _tting "measured\ e[g[\ in terms of the correlation
coe.cient# of relationship "17# is improved[

Finally\ the values of the parameters are determined as follows ]

"0# Choose the value of E\ which is equal to the tangent of the main path for the perfect system\
in such a manner that the main path given by eqn "14# relates experimental curves in the region
su.ciently away from the bifurcation point[

"1# The value of p\ which is associated with the tangent of the bifurcation path\ can be determined
by substituting the value of E into the formula "18# for g�\ the value of which is given by the
tangent of the u½ =h vs f½c relationship[

"2# The value of qo for each imperfect curve is evaluated by means of the Koiter law "5# with the
use of the maximum load fc of the curve[

2[2[ Use of stochastic theory of imperfection sensitivity

The multiplicity of a bifurcation point cannot be known only from the asymptotic laws for a
symmetric displacement since these laws hold both for simple and double points of bifurcation[ In
addition\ although the observation in the symmetry of the bifurcating branch may be a useful
alternative to identify the type of bifurcation point "cf Ikeda et al[\ 0886b#\ such observation is
often di.cult during experiments[ To determine the multiplicity we can make use of the stochastic
variation of the critical load fc among specimens\ which varies with the multiplicity of a bifurcation
point "cf Murota and Ikeda\ 0881 ^ Ikeda and Murota\ 0882#[

Let us assume that the imperfection pattern vector d in eqn "2# is subject to a multivariate
normal distribution with a mean 9[ The probability density functions f of the critical load fc for a
simple\ unstable\ symmetric bifurcation point and a double\ unstable one\ respectively\ read ]
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ffc" fc# �

F

G

G

j

J

G

G

f

2=fc−f 9
c =0:1

z1pC2:1
exp 0

−0
1 b

fc−f 9
c

C b
2

1\ −�¾ fc ¾ f 9
c

at simple\ unstable\ symmetric bifurcation point\

2" fc−f 9
c #1

1C2
exp 0

−=fc−f 9
c =2

1C2 1\ −�¾ fc ¾ f 9
c

at double\ unstable bifurcation point with n¼ − 4\

"24#

where C is a constant associated with the variance[ The mean Eð fcŁ and the variance Varð fcŁ of fc
are expressed\ respectively\ as

F

G

j

J

G

f

Eð fcŁ � f 9
c −9[791C\ Varð fcŁ �"9[321C#1

at simple\ unstable\ symmetric bifurcation point\

Eð fcŁ � f 9
c −0[02C\ Varð fcŁ �"9[398C#1

at double\ unstable bifurcation point with n¼ − 4[

"25#

By equating the sample mean and variance with Eð fcŁ and Varð fcŁ in the expressions above\ we can
estimate the value of f 9

c [ We may then compare this with the value obtained based on the procedure
presented in Section 2[0 or Section 2[1 to determine the multiplicity of the bifurcation point[

3[ Numerical examples

The validity of the asymptotic formulas presented in Section 1 is con_rmed based on the
computational results on structural models[

3[0[ Rectan`ular plates

We consider here as examples of simple\ stable\ symmetric bifurcation points\ the elastic bifur!
cation analysis of a pair of four!sides!simply!supported rectangular plates subject to in!plane pure
bending to in!plane pure compression[ The details of this analysis can be found in Nakazawa et
al[ "0885#[ The depth!thickness ratio is chosen to be b 0 b:t � 199\ and the aspect ratio to be
a 0 a:b � 9[7 for the pure bending and 0[9 for the pure compression\ respectively\ where t\ a and
b denote the thickness\ the width and the depth of the plate\ respectively[

This plate undergoes a bifurcation process with a symmetry reduction ] D0 : C0 in association
with the loss of up!side!down symmetry[ The initial imperfection is imposed in terms of an initial
de~ection of

o sin 0
px
a 1 sin 0

py
b 1\ 9 ¾ x ¾ a\ 9 ¾ y ¾ b\

which is of the same pattern as the bifurcation mode[ The out!of!plane de~ection u normalized
with respect to the thickness t of the plate is measured from the center line of the plate at
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Fig[ 3[ Equilibrium paths of the plate[ "*# denotes an equilibrium path and "×# indicates the simulation[

Fig[ 4[ u½+` vs o0:2 relationship of the plate[

"x\ y# �"9[4a\ 9[6b# for the pure bending and at "x\ y# �"9[4a\ 9[4b# for the pure compression\
respectively[ This falls in the category of the nonsymmetric displacement treated in Section 1[2[0[

The solid lines in Fig[ 3 shows a series of equilibrium paths computed for various values of o[
Then\ we obtain the value of u+` of the intersection point of the parabola "7# with the imperfect
f vs u curves "o � 9#[ The u½+` vs o0:2 relationship for the plate in Fig[ 4 displays accurate linearity
associated with the asymptotic law "8#[

The computational curves are accurately simulated by a series of points shown by "×# in Fig[ 3
that are computed from the bifurcation eqn "05#[ Unlike in experimental curves\ the location of
the bifurcation point and the bifurcation curve are known in this analysis[ The values of the
parameters in eqn "05#\ accordingly\ were chosen as follows "without resort to the procedure
presented in Section 2[1# ]

"0# E is set to �\ since the main path of the prefect system is given by u � 9[
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Fig[ 5[ Regular hexagonal "D5!invariant# truss dome "unit in cm#[

Fig[ 6[ Regular pentagonal "D4!invariant# truss dome "unit in cm#[

"1# p� is determined so that f½¦p�u½1 � 9 approximates well the bifurcation path[
"2# q� is determined so that the slope of the u½+` vs o0:2 relationship in Fig[ 4 is equal to the slope

ðq�:"`−p�#Ł0:2 of the law "07#[

3[1[ Re`ular poly`onal truss domes

A regular!hexagonal "D5!invariant# truss dome0 in Fig[ 5 serves as a numerical example of a
simple\ unstable\ symmetric point of bifurcation\ whereas the regular pentagonal "D4!invariant#
one in Fig[ 6 as a group!theoretic double point with an index n¼ − 4[ All members of these domes
have the same modulus of elasticity and the same cross section[ A vertical "Z!directional# load
9[4f is applied to the crown node 0 and a uniform vertical load f to each of other free nodes[

0 The perfect bifurcation of this dome was analyzed also by Healey "0877# in the framework of the group!theoretic
bifurcation theory with an emphasis on the exploitation of symmetry[
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3[1[0[ Simple bifurcation point
For the D5!invariant regular!hexagonal dome in Fig[ 5\ as initial imperfections\ the initial

location of the nodes 2\ 4 and 6 are lifted upwards in the Z!direction at a length of o\ respectively[
The nonlinear equilibrium eqn "0# of the dome is solved for the values of the initial imperfection o

of 9\ 9[90\ 9[92\ 9[0 and 9[2 to obtain the main and the bifurcation path shown by the dashed line
and the imperfect paths shown by the solid lines in Fig[ 7[ The symbol "�# in this _gure denotes
a simple\ unstable\ symmetric bifurcation point[ The Z!directional components of the critical
eigenvector\ which represent a bifurcation mode\ at this point are schematically depicted in Fig[ 8[
This mode has the rotation symmetry with respect to a rotation around Z!axis at an angle of 1p:2
and the re~ection symmetry with respect to the three vertical planes that\ respectively\ pass the
lines 1!0!4\ 2!0!5 and 3!0!6\ and therefore is D2!invariant[ Thus the bifurcation point is related to a
symmetry!breaking process ] D5 : D2\ and hence is associated with the one!dimensional irreducible
representation "d\ j# �"0\ 2# in eqn "A05#[ The Z!coordinate of the _rst node z0 in Fig[ 5\ which is
used as the abscissa in Fig[ 7"a#\ is D5!invariant\ and hence corresponds to the case of a symmetric
"D5!invariant# displacement with hi�0 � 9 in Section 1[2[ In contrast\ the second node z1 in "b# in

Fig[ 7[ Equilibrium paths of the hexagonal truss dome[ "a# f vs z0 curve[ "b# f vs z1 curve[ "*# denotes a curve for an
imperfect system\ "! ! !# indicates that for a perfect one\ and "�# represents a bifurcation point[

Fig[ 8[ Bird|s!eye view of the Z!directional components of the bifurcation mode at the bifurcation point of the hexagonal
dome[
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Fig[ 09[ The application of the asymptotic laws to a D5!invariant displacement z0[ "a# f½c vs "z½0# =h relationship[ "b# f½c vs
ð"z½0#+`Ł1 relationship[

Fig[ 5\ which is used as the abscissa in Fig[ 7"b#\ is not D5!invariant and corresponds to the case
of a non D5!invariant displacement with hi�0 � 9 in Section 1[2[

First the applicability of the asymptotic laws to the D5!invariant displacement z0 is investigated[
Whereas the law "17# is expected in this case\ another law "08# for a non!D5!invariant displacement
is used for comparison[ The intersection points of the imperfect paths and the straight line
f½¦hz½0 � 9 of eqn "15# and those of the paths and the parabola f½¦`z½1

1 � 9 of eqn "06# are obtained
for various values of h and `[ Figure 09 shows =f½c= vs "z½0# =h relationship in "a# and =f½c= vs ð"z½0#+`Ł1

one in "b#[ The straight lines\ which denote the least square approximation to the data\ pass the
close neighborhood of the origin in "a# and not in "b#[ Thus\ the present computational results are
in good agreement with the asymptotic law in eqn "17#\ which represents a straight line passing
the origin\ and fail to satisfy the other asymptotic law in eqn "08#\ which is not applicable to this
type of displacement[ The consideration of the type of displacement\ accordingly\ is vital in the
successful application of the asymptotic laws[

Next\ for the non!D5!invariant displacement z1\ =f½c= vs ð"z½1#+`Ł1 relationship in Fig[ 00 is obtained[
The straight lines representing the least square approximation to the plotted data correlate well
with these data and pass the origin[ This assesses the validity and applicability of the law "08# that
corresponds to the straight line passing the origin[

Finally\ in Fig[ 01"a# and "b#\ the equilibrium paths of the dome\ shown by the solid lines in "a#
and "b#\ are simulated by the asymptotic curves\ shown by the dashed lines\ which are computed
by eqns "10# and "05#\ respectively[ The asymptotic curves are very close to the equilibrium paths
for "a# and fairly close for "b#[ We could determine the values of the parameters E\ p\ qo\ p� and
q�o in these equations using the procedure described in Section 2[0\ but we here adopt the following
alternative procedure to show another possibility ]

, The value of E was chosen in such a manner that the asymptotic curve is tangential to the
computational one at the bifurcation point[

, For D5!invariant displacement\ the value of p was chosen in view of the relationship that the
value of the slope of the straight line in Fig[ 09"a# is equal to g� in "18#[ The value of qo was
chosen based on the Koiter law "13#[
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Fig[ 00[ The application of the asymptotic law "17# to a non!D5!invariant displacement z1 " f½c vs ð"z½1#+`Ł1 relationship#[

Fig[ 01[ The simulation of the equilibrium paths of the hexagonal truss dome by the asymptotic curves[ "a# f vs z0 curve[
"b# f vs z1 curve[ "*# denotes a computational curve\ "! ! !# indicates an asymptotic one\ and "�# represents a bifurcation
point[

, For non!D5!invariant displacement\ the value of p� was chosen such that the value of the slope
of the straight line in Fig[ 00 is equal to the tangent of the relationship "08#\ and the value of q�o

by the Koiter law "5#[

3[1[1[ Double bifurcation point
The D4!invariant regular!pentagonal dome in Fig[ 6 is considered as an example of a system

with a double bifurcation point with an index n¼ − 4[ As initial imperfections\ the initial location
of the nodes 1Ð5 are displaced in the Z!direction[ The amount of the initial displacement of each
node was given randomly to simulate "physical# experiments\ in which the pattern and the mag!
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Fig[ 02[ Equilibrium paths of the pentagonal truss dome obtained through computation[ "a# f vs z0 curves[ "b# f vs z1

curves[ "*# denotes an imperfect curve\ "! ! !# indicates a perfect one\ and "�# is a bifurcation point[

Fig[ 03[ Bird|s!eye view of the Z!directional components of the inner pentagonal nodes for a pair of bifurcation modes
at the double bifurcation point of the pentagonal dome[

nitude of the initial imperfections cannot be known a priori[ The solid lines in Fig[ 02"a# and "b#
show some instances of equilibrium paths computed for those initial imperfections[ The vertical
displacement z0 for the center node used as the abscissa in "0# is D4!invariant\ whereas z1 for an
outer node is not[ The dashed lines in this _gure denote the paths for the perfect system "o � 9#\
and the symbol "�# denotes a double\ unstable bifurcation point with an index n¼ � 4[ The Z!
directional components of the inner pentagonal nodes of the pair of critical eigenvectors h0 and h1

at this point are depicted in Fig[ 03[ The mode for h0\ which has the re~ection symmetry with
respect to a vertical plane\ is D0!invariant\ whereas that for h1 lacking the re~ection symmetry is
C0!invariant[ This bifurcation point is related to a symmetry!breaking process ]1 D4 : Dj

0

" j � 0\ [ [ [ \ 4# with an index of n¼ � 4[ It is well known that 1n¼ � 09 half branches exist at this
double bifurcation point "cf e[g[\ Ikeda et al[\ 0880#[

First\ we consider the D4!invariant vertical displacement z0 of the node 0\ for which the asymp!

1 This bifurcation point is associated with the two!dimensional irreducible representation "d\ j# �"1\ 1# de_ned by eqn
"A04#[
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Fig[ 04[ The application of the asymptotic law "17# for a D4!invariant displacement to the pentagonal truss dome ð=f½c=
vs "z½0# =h relationship for h � −9[0277Ł[

totic laws "10#Ð"18# are applicable[ The =f½c= vs "z½0# =h relationship plotted in Fig[ 04 correlates well
with the asymptotic law in "17# that represents a straight line passing the origin "the correlation
coe.cient is 9[883#[

Next\ let us consider the vertical displacement z1 of the node 1\ which is not D4!invariant[
Unlike for simple bifurcation points\ no asymptotic laws are applicable to this non!D4!invariant
displacement[ There are as many as six f vs z1 curves bifurcating from the point\ as shown in Fig[
02"b#[ Owing to the presence of so many bifurcating curves\ the simulation is not possible[

A set of 49 imperfect equilibrium paths are obtained by imposing normally!distributed initial
imperfections on the Z!directional components of the free nodes of the pentagonal dome[ The
stochastic theory of initial imperfections presented in Section 2[2 is applied to this case[ The
histogram of the maximum loads fc is compared with the probability density functions "24# for a
simple\ unstable\ symmetric point and a double bifurcation point in Fig[ 05\ where the abscissa
indicates a normalized critical load z �" fc−f 9

c #:C[ The use of the sample values

Eð fcŁ � 11[05×09−3EA\ Varð fcŁ � 9[0151×"09−3EA#1

of fc in eqn "25# results in the values of f 9
c and C\

F

G

j

J

G

f

f 9
c � 11[71×09−3EA\ C � 9[7103×09−3EA\

assuming simple\ symmetric bifurcation point\

f 9
c � 12[03×09−3EA\ C � 9[7575×09−3EA\

assuming double bifurcation point[

"26#

The substitution of these values of f 9
c and C into eqn "24# gives the probability density function of

fc shown in Fig[ 05[ The statistical estimate f 9
c � 12[03×09−3EA for the double point in eqn "26#

is much closer to the exact value f 9
c � 12[21×09−3EA\ in comparison with f 9

c � 11[71×09−3EA
estimated for the simple\ symmetric bifurcation point[ Hence we conclude that the bifurcation
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Fig[ 05[ Histogram and the curves of probability density function of the normalized critical load z �" fc−f 9
c #:C for 49

imperfect regular!pentagonal domes[ "! ! !# indicates a curve for a simple\ unstable\ symmetric bifurcation point and
solid one "*# that for a double\ unstable bifurcation point[

point is a double point[ The observation of the stochastic scatter of critical loads\ in this manner\
enables us to determine the multiplicity of a bifurcation point if the value of f 9

c "or its estimate
somehow obtained# is available[

4[ Experimental examples

We investigate the applicability of the asymptotic laws presented in Section 1 and of the
procedure for recovering the curve for the perfect system presented in Section 2 to cylindrical sand
specimens subject to triaxial compression test[

4[0[ Procedure for a sin`le curve

As an example of a single curve\ we refer to the experimental data of Ikeda et al[ "0886b# for
the triaxial compression test on Toyoura sand specimens with a diameter of 6 cm and a height of
09 cm[ The initial void ratio was aimed at 9[55[ These specimens with lubricated ends under drained
condition were subject to a con_ning pressure s2 of 87 kPa "0[9 kgf:cm1#[

The technique of the search of the bifurcation point is applied to a pair of specimens 3!3 and 7!
0[ Figure 06 shows the s vs oa curves of these specimens and the rectangular areas employed for
the search\ whereas Fig[ 07 shows the distribution of the inverse 0:VarðEŁ of the variance VarðEŁ
among Ei "i � 0\ 1\ [ [ [# in the rectangular areas of "oa\ s# in Fig[ 06[ Here s � s0−s2 indicates the
deviator stress "s0 is the axial stress#[ This _gure clearly shows for each specimen the presence of
the location of local minimum\ which corresponds to the bifurcation point[ In the course of the
search\ the values of the parameters p\ E\ and qo have been obtained for each specimen[
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Fig[ 06[ Simulation of a pair of curves of deviator stress vs axial strain "sÐoa# for sand specimens[ "a# Specimen 3!3
ð"oa#9

c � 1[78\ s9
c � 2[81\ p � 9[9462\ E � 9[606 and qo � 0[981Ł[ "b# Specimen 7!0 ð"oa#9

c � 1[93\ s9
c � 2[59\ p � 9[9200\

E � 0[946 and qo � 0[149Ł[ "*# denotes an experimental "imperfect# curve\ "! ! !# indicates a computed one\ and "�#
represents a bifurcation point[

Fig[ 07[ The distribution of the inverse of the variance VarðEŁ among Ei "i � 0\ 1\ [ [ [# in the rectangular areas of "oa\ s#
in Fig[ 06[

Figure 06 shows the simulation of the curves of deviator stress vs axial strain "sÐoa# for the two
specimens by eqn "10#\ with the use of the values of the parameters obtained by the search[ The
theoretical curves correlate fairly well with the experimental ones\ especially in the vicinity of the
bifurcation point[ This is in agreement with the local nature of the present theory that is more
accurate in the vicinity and less accurate away from the point ^ such inaccuracy away from it may
be attributed also to plasticity[ Note that the simulation carried out here is not the curve _tting by
arti_cial choice of the values of parameters since the values of all parameters were uniquely
determined based on the search strategy[

4[1[ Procedure for a series of curves

As an example of a series of curves\ we refer to a set of 21 experimental curves of stress vs strain
of cylindrical sand specimens "see\ Ikeda and Murota\ 0885 for more details#[ These specimens
had a constant diameter D of 6 cm and a height H of 04 cm[ The initial void ratio e9 was controlled
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Fig[ 08[ Simulation of the curves of deviator stress vs axial strain "sÐra# for sand specimens[ ð"oa#9
c � 0[54\ s9

c � 4[09\
p � 9[9208\ E � 0[64 and qo � 0[20 for No[ 01 and 0[77 for No[ 21Ł[ "*# denotes an experimental "imperfect# curve\
"! ! !# indicates a computed one\ and "�# represents a bifurcation point[

to the range of 9[56 ³ e9 ³ 9[58[ These specimens with _xed ends under drained condition were
made of fresh saturated Toyoura sand subject to a con_ning pressure of 87 kPa "0[9 kgf:cm1#[
Examples of experimental curves of deviator stress s vs axial strain oa are shown in Fig[ 08[

The initial states for the specimens are assumed to be Dn!invariant with n large[ Among the
possible bifurcation points of this system\ we restrict ourselves to a simple\ symmetric bifurcation
point and a double bifurcation point with n¼ − 4\ which are associated\ respectively\ with the
symmetry!breaking processes ]

6
Dn : Cn at simple\ symmetric bifurcation point\

Dn : Dm at double bifurcation point "n¼ − 4#[

In order to determine the type of displacement and of the bifurcation point\ we refer to the
asymptotic laws and the stochastic theory of imperfection sensitivity "cf\ Section 2[2#[ Since the
observed variable\ axial strain oa\ is Dn!invariant\ the asymptotic law "17# for a Dn!invariant
displacement of a simple\ symmetric bifurcation point or a double bifurcation point is expected to
be applicable in the present case[

The asymptotic law "17# for a Dn!invariant displacement is employed[ Unlike for the com!
putational results in the previous section\ the paths for the perfect system and the location of the
bifurcation point cannot be known a priori[ Therefore\ a systematic search in the two!dimensional
space of "oa\ s# with a su.ciently _ne mesh was carried out in order to choose the location where
the value of the correlation coe.cient of relationship "17# is maximized to be a bifurcation point
""oa#9

c \ s9
c #[ The =s½ c= vs "o½a# =h relationship for the 21 sets of data plotted in Fig[ 19 is in good

agreement with the straight line passing the origin that corresponds to the asymptotic law in eqn
"17# ^ the correlation coe.cient is equal to 9[879[

Figure 08 shows the simulation of the curves of axial strain vs deviator stress "oaÐs# for the two
specimens by eqn "10#\ with the use of the values of the parameters that were chosen based on the
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Fig[ 19[ The =s½ c= vs "o½a# =h relationship "h � 9[06# of the sand specimens ð""oa#9
c \ s9

c # �"0[54\ 4[09#Ł[

procedure presented in Section 2[1[ The theoretical curves correlate fairly well with the experimental
ones[

As we have seen in Fig[ 19\ the law "17# for a Dn!invariant displacement had much better
correlation with the experimental data than the law "08# for a non!Dn!invariant one\ in agreement
with the aforementioned expectation[ An appropriate choice of a law has thus resulted in a better
correlation[

In order to determine the multiplicity of the bifurcation point\ which cannot be determined
merely from the asymptotic law "17#\ we employ the stochastic theory of imperfection sensitivity
"cf\ Section 2[2#[ The histogram of the maximum deviator stress for those specimens is compared
in Fig[ 10 with the probability density functions for a simple\ unstable\ symmetric and for a double

Fig[ 10[ Histogram and the curves of probability density function of the maximum deviator stress sc for 21 sand
specimens[ "! ! !# indicates a curve for a simple\ unstable\ symmetric bifurcation point and "*# that for a double\ unstable
bifurcation point[
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bifurcation point[ The values of the sample mean EðscŁ and the sample variance VarðscŁ of the
maximum deviator stress\ respectively\ are ] EðscŁ � 3[38 and VarðscŁ � 9[9224[ The use of these
values in eqn "25# results in the estimated values of s9

c and C\

F

G

j

J

G

f

s9
c � 3[72"×87 kPa#\ C � 9[313"×87 kPa#

assuming simple\ symmetric bifurcation point\

s9
c � 3[85"×87 kPa#\ C � 9[337"×87 kPa#

assuming double bifurcation point[

"27#

The substitution of these values of s9
c and C into eqn "24# gives the probability density function

of sc shown by the solid and dashed curves in Fig[ 10[ The two possible values of s9
c in eqn "27#

are to be compared with the target value s9
c � 4[09 obtained from the =s½ c= vs "o½a# =h relationship in

Fig[ 19"a#[ Evidently\ the value s9
c � 3[85 for the double point in eqn "27# is much closer to the

target value s9
c � 4[09 than s9

c � 3[72 for the simple symmetric bifurcation point is[ Based on this\
it is concluded that the bifurcation point is more likely to be a double point[

5[ Conclusions

A series of pertinent asymptotic laws for physically observable displacements for systems with
dihedral group symmetry undergoing bifurcation have been presented in order to make the results
of bifurcation theory hitherto developed applicable to bifurcation observed in experiments[ As we
have seen through the application to numerical and experimental examples\ the whole set of laws
are capable of describing various aspects of bifurcation behavior in a consistent manner[ In the
successful physical interpretation of experimental curves subject to bifurcation\ it is vital to
identify the symmetry of the observed displacement and the type of bifurcation point\ because the
asymptotic formulas to be employed vary depending on the symmetry and the type[ This paper
hopefully has o}ered a step towards such success\ whereas the group!theoretic bifurcation theory
serves as a supplementary means to identify the type of bifurcation point through the observation
of the shape and deformation pattern of a specimen "Ikeda et al[\ 0886b#[

The perfect curve of a system has been constructed based on a single or a number of experimental
curves[ This perfect curve o}ers us the insight into the mechanism of bifurcation behavior\ and
hence is vital in arriving at the true constitutive relationship[ A dual viewpoint of bifurcation and
plasticity\ accordingly\ will be needed in the future study of constitutive relationship[
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Appendix ] Dn!equivariant system

Technical details of the analysis for systems with regular!polygonal "dihedral group# symmetry
are presented in this Appendix[ The major development is a recapitulation of Murota and Ikeda
"0880#\ whereas Section A[4[1 and part of Section A[3 are new[

A[0[ Group equivariance

We consider a system of nonlinear equilibrium equations

F"u\ f\ v# � 9\ "A0#

where u $ RN is a displacement "or position# vector\ f $ R a loading parameter\ v $ Rp an imperfection
parameter vector[ We assume that the symmetry of the imperfect system is described by the
equivariance of F"u\ f\ v# in eqn "A0# to a compact group G ]

T"`#F"u\ f\ v# � F"T"`#u\ f\ S"`#v#\ ` $ G\ "A1#

where T"`# and S"`# "` $ G# denote unitary matrix representations of G on the space RN of
displacement vector u and on the space Rp of imperfection parameter v\ respectively[ Let us denote
by S"u# the isotropy subgroup of u\ i[e[\

S"u# � S"u ^ G\ T# � "` $ G=T"`#u � u#[ "A2#

Similarly we denote

S"v# � S"v ^ G\ S# � "` $ G=S"`#v � v#[

Henceforth we assume S"v9# � G\ i[e[\ that the imperfection vector v9 of the perfect system is G!
symmetric[ It then follows from eqn "A1# that the perfect system F"u\ f\ v9# is equivariant to G ]

T"`#F"u\ f\ v9# � F"T"`#u\ f\ v9#\ ` $ G[ "A3#

We also assume S"u9
c # � G\ i[e[\ that the critical point "u9

c \ f 9
c # of the perfect system lies on a G!

symmetric equilibrium path[ If S"u# � G for "u\ f # on the path of the perfect system\ the equi!
variance "A3# is inherited to the Jacobian as

T"`#J"u\ f\ v9# � J"u\ f\ v9#T"`#\ ` $ G[ "A4#

The Jacobian matrix is singular at the critical point "u9
c \ f 9

c # ] let M be the rank de_ciency "i[e[\
dimension of the kernel# of J9 � J"u9

c \ f 9
c \ v9#[ By eqn "A4# the kernel is G!invariant[ The point

"u9
c \ f 9

c # is called simple if M � 0 and double if M � 1[ The point is called group!theoretic if the
kernel of J is G!irreducible and parametric otherwise[ "Here the kernel space is said to be G!
irreducible if it contains no nontrivial proper G!invariant subspace ^ it is G!reducible otherwise[#
In this paper we shall be interested in group!theoretic critical points\ which appear generically due
to group symmetry[
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A[1[ LiapunovÐSchmidt reduction

We now reduce the whole system "A0# of N equations to M "�dim ker J9# equations according
to a standard procedure known as the elimination of passive coordinates "e[g[\ Thompson and
Hunt\ 0862# or the LiapunovÐSchmidt reduction "e[g[\ Sattinger\ 0868#[ Let "jj = j � 0\ [ [ [ \ N# and
"hj = j � 0\ [ [ [ \ N# be orthonormal bases of RN such that

jT
i J9 � 9T\ J9hj � 9\ i\ j � 0\ [ [ [ \ M\

where "=#T denotes the transpose of a matrix[ Note that "ji = i � 0\ [ [ [ \ M# and "hj = j � 0\ [ [ [ \ M#
span the kernels of "J9#T and J9\ respectively[ We express the displacement u in terms of
w �"wi = i � 0\ [ [ [ \ N# $ RN as

u � u9
c ¦ s

N

j�0

wjhj[ "A5#

With the use of f½ in eqn "1# and w in eqn "A5#\ the original system "A0# is decomposed into two
parts ] one system of equations for the kernel space

jT
i F 0u9

c ¦ s
N

j�0

wjhj\ f 9
c ¦f½\ v1� 9\ i � 0\ [ [ [ \ M\ "A6#

and the other for the rank space

jT
i F 0u9

c ¦ s
N

i�0

wjhj\ f 9
c ¦f½\ v1� 9\ i � M¦0\ [ [ [ \ N[ "A7#

By the implicit function theorem\ the latter system of equations can be solved locally in the
neighborhood of "u9

c \ f 9
c \ v9# for wj " j � M¦0\ [ [ [ \ N# as

wj � 8j"w½ \ f½\ v#\ j � M¦0\ [ [ [ \ N\

where w½ �"wi = i � 0\ [ [ [ \ M# $ RM[ On substituting this into eqn "A6# we obtain a reduced system
of M equations

F	"w½ \ f½\ v# � 9 "A8#

in w½ $ RM\ where F	�"F	i = i � 0\ [ [ [ \ M# and

F	i"w½ \ f½\ v# � jT
i F 0u9

c ¦ s
M

j�0

wjhj¦ s
N

j�M¦0

8j"w½ \ f½\ v#hj\ f 9
c ¦f½\ v1

"i � 0\ [ [ [ \ M#[ This reduced eqn "A8# is called the bifurcation equation "often with v � v9#[
Referring to v � v9¦od in eqn "2#\ we _x the imperfection mode d and often regard o as an
independent variable for imperfection v ^ namely\ we put

F
"w½ \ f½\ o# � F	"w½ \ f½\ v9¦od#[ "A09#

This is for the convenience of asymptotic analysis with su.ciently small o[
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The critical point "uc\ fc# of an imperfect system is determined from the bifurcation eqn "A8# as
its critical point\ at which the Jacobian of eqn "A8# vanishes ]

det J	"w½ \ f½\ v# � 9\ "A00#

where J	�"1F	i:1wj = i\ j � 0\ [ [ [ \ M#[
The bifurcation equation "A8# inherits the group equivariance of the original system "A0#\ that

is\

T	"`#F	"w½ \ f½\ v# � F	"T	"`#w½ \ f½\ S"`#v#\ ` $ G\ "A01#

is satis_ed for appropriate choices of "ji# and "hi#[ In this equation T	 is the subrepresentation of
T on the M!dimensional kernel of J9 � J"u9

c \ f 9
c \ v9#[ Here T	 is unitary since T"`# is assumed to be

unitary and "ji# and "hi# are orthonormal[

A[2[ Re`ular poly`onal symmetry

We choose G to be the dihedral group Dn of degree n introduced in Section 1[3[ Let

R"Dn# � 6
""0\ j# = j � 0\ 1\ 2\ 3# k ""1\ j# = j � 0\ [ [ [ \"n−1#:1# for n even\

""0\ j# = j � 0\ 1# k ""1\ j# = j � 0\ [ [ [ \"n−0#:1# for n odd\
"A02#

be the index set of all nonequivalent real irreducible representations of Dn\ where the _rst com!
ponent d of the index "d\ j# indicates the dimension[

The one!dimensional irreducible representations "0\ j# are de_ned by

T "0\j# "c"1p:n## � 6
0 if j � 0\ 1\

−0 if j � 2\ 3 ^
T "0\j# "s# � 6

0 if j � 0\ 2\

−0 if j � 1\ 3[
"A03#

The two!dimensional representations "1\ j# can be chosen such that

T "1\j# "c"1p:n## � 0
cos"1pj:n# −sin"1pj:n#

sin"1pj:n# cos"1pj:n# 1\ T "1\j# "s# � 0
0 9

9 −01[ "A04#

Since the kernel of J9 is Dn!invariant\ as noted before\ it is generically a Dn!irreducible subspace[
Hence\ generically\ the critical point "u9

c \ f 9
c # is either simple or double\ according to whether it is

associated with a one!dimensional irreducible representation "0\ j# " for some j# or a two!dimen!
sional one "1\ j# " for some j#[

For a simple critical point\ we note that

S"j0# � S"h0# � Dn\ Cn\ Dn:1\ or D1
n:1 "A05#

according to whether the point corresponds to "0\ j# " j � 0\ 1\ 2 or 3#[ The critical point "u9
c \ f 9

c # is
generically a limit point if the associated representation is "0\ 0# and a simple\ symmetric "pitchfork#
bifurcation point otherwise[

For a double critical point related to a two!dimensional irreducible representation "1\ j#\ we note
that

S"a0j0¦a1j1# � S"b0h0¦b1h1# � Cm
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for general coe.cients ai and bi "i � 0\ 1#\ where m is the greatest common divisor of n and j[
Although vectors ji and hi "i � 0\ 1# in general are Cm!invariant\ one can elaborately choose them
to satisfy

S"j0# � S"h0# � D0
m[

The space X � RN of w is decomposed into mutually orthogonal subspaces of X compatibly
with the framework of the irreducible representations in eqn "A02#\ by means of the so!called
isotypic "standard# decomposition\ that is\

X � $
m$R"Dn#

Xm\ "A06#

where Xm are mutually orthogonal subspaces of X associated with the irreducible representation
m �"d\ j# and the symbol $ expresses the direct sum[

A[3[ Simple bifurcation point

Asymptotic formulas for simple bifurcation points of a Dn!invariant system are derived here\ as
a re_nement of Ikeda et al[ "0886a\ b# in view of group symmetry[

Suppose that the critical point "u9
c \ f 9

c # of a perfect Dn!symmetric system is a simple bifurcation
point\ with which a nonunit one!dimensional irreducible representation\ "0\ j# with j � 1\ 2\ or 3 is
associated[ We may grasp the essential nature of eqn "A8# with eqn "A09# "M � 0# by expanding
it into a power series involving appropriate number of terms

F
"w\ f½\ o# 0 s
i�9

s
j�9

s
k�9

Aijkw
if½ jok � 9\ "A07#

where

Aijk � Aijk"d# �
0

i;j;k;
1F
 i¦j¦k

1wi 1f½ j 1ok b"w\f½\o#�"9\9\9#

[

Since "w\ f½\ o# �"9\ 9\ 9# corresponds to a critical point of the perfect system\

A999 � A099 � 9 "A08#

must be satis_ed[
Under the natural assumption that the group representation S"`# is not disjoint from the nonunit

irreducible representation "0\ j#\ the condition "A01# for Dn!equivariance of the bifurcation eqn
"A09# may be replaced approximately by

T "0\j# "`#F
"w\ f½\ o# � F
"T "0\j# "`#w\ f½\ T "0\j# "`#o#\ ` $ G[ "A19#

By the de_nition of T"0\j#"`# in eqn "A03#\ the symmetry condition in eqn "A19# reduces to ]

−F
"w\ f½\ o# � F
"−w\ f½\ −o#[ "A10#

This equation denotes that F	"w\ f½\ o# is an odd function in w and o[
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The condition for the criticality "A08# and that for the symmetry "A10# restricts the form of eqn
"A07# to

F
"w\ f½\ o# � A009wf½¦A299w
2¦A990o¦h[o[t[ � 9[ "A11#

This coincides with the bifurcation eqn "3# in Section 1[1[
Next we consider the symmetry of the observed displacement ui�[ Suppose ui� has Dn!symmetry\

i[e[\ that the i�th unit vector ei� is invariant under the action of Dn[ On the other hand\ the critical
eigenvector h0 corresponds to a nonunit one!dimensional irreducible representation[ This implies
that hi�0 � 9 in the expression "A5#[ This is the group!theoretic explanation for the second case of
the categorization in eqn "03#[

A[4[ Double bifurcation point

We turn to a double bifurcation point of a Dn!invariant system[

A[4[0[ Symmetry in bifurcation equation
Suppose that the critical point "u9

c \ f 9
c # of a perfect Dn!symmetric system is a group!theoretic

double point\ and let the two!dimensional irreducible representation "1\ j# with some j of Dn be
associated with the kernel of J9 � J"u9

c \ f 9
c \ v9#\ which is spanned by h0 and h1[ The vectors in the

kernel space are invariant under Cm "where m is the greatest common divisor of n and j#[ Note
that n¼ � n:m − 2[ We follow a standard technique "cf Sattinger\ 0868 ^ Golubitsky et al[\ 0877# to
deal with a Dn!equivariant bifurcation equation[

We adopt complex coordinates "z\ z¹# instead of "w0\ w1# for the kernel space\ i[e[\ z � w0¦iw1

and z¹ � w0−iw1\ and put

F"z\ z¹\ f½\ v# � F	0"w0\ w1\ f½\ v#¦iF	1"w0\ w1\ f½\ v#[ "A12#

The reduced eqns "A8# are equivalent to

F"z\ z¹\ f½\ v# � F"z\ z¹\ f½\ v# � 9\ "A13#

whereas the other eqn "A00# to

b
1F
1z b

1

−b
1F
1z¹ b

1

� 9[ "A14#

With reference to the generic argument for Dn "cf\ Ikeda et al[\ 0880#\ the explicit form of F is
to be expressed as ]

F � −f½z−z1z¹¦ s
1¾q¾n¼:1−0

cqz
q¦0z¹q¦bz¹b¼−0¦ao\ "A15#

where b and cq are real constants[ With the use of the polar coordinates

z � r exp"iu#\ z¹ � r exp"−iu#\ a � =a= exp"ic#\

in eqn "A15#\ eqn "A13# reduces to
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rf½� −r2¦ s
1¾q¾n½:1−0

cqr
1q¦0¦brn¼−0 cos"n¼u#¦=a=o cos"u−c#\ "A16#

brn¼−0 sin"n¼u#¦=a=o sin"u−c# � 9[ "A17#

The asymptotic expression of the bifurcation equation\ accordingly\ is dependent on the value of
the index n¼ � n:m[

When n¼ − 4\ it follows from eqns "A14# and "A15# that the critical point on the main path of
an imperfect system is given by

f½½
−2=a=1:2

30:2
o1:2\ z ½

a

10:2 =a=1:2
o0:2[

Combining these expressions with eqn "A17# we see that

r ½
=a=0:2

10:2
o0:2\ u−c � O"o

n¼−3
2 #[

Therefore\ we can approximate eqn "A16# by

rf½¦r2−=a=o � 9[ "A18#

It should be emphasized here that the bifurcation eqn "A18# for the double point with n¼ − 4 is of
the same form as eqn "A11# for the simple symmetric bifurcation point[

When n¼ � 2 or 3\ eqn "A16# becomes

6
rf½� br1 cos"2u#¦=a=o cos"u−c# if n¼ � 2\

rf½� −r2¦br2 cos"3u#¦=a=o cos"u−c# if n¼ � 3[
"A29#

A[4[1[ Asymptotic laws
Asymptotic laws for a Dn!invariant displacement component ui� are derived for the group!

theoretic double bifurcation point with n¼ − 4[ We show below that if ui� is invariant under the
action of Dn\ then u½i� "with a particular i�# becomes ]

u½i� � Ri�f½¦Si�r
1¦h[o[t[\

where Ri� and Si� are constants[
Let w"d\j# denote the component of w corresponding to the subspace X"d\j# in the isotypic decompo!

sition in eqn "A06#[ Denoting by N"d\j# the multiplicity of the irreducible representation "d\ j#\ we
see that w"d\j# is of dimension d = N"d\j#[ The variables w0 and w1 in eqn "A12# can be identi_ed with
some components of w"1\j#[

We further assume that the observed variable ui� represents a displacement that is invariant
under the action of Dn[ This assumption implies that

u½i� 0 ui�−"ui�#9
c � s

N "0\0#

k�0

h"0\0#
i�k w"0\0#

k \ "A20#
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where h"0\0#
k "k � 0\ [ [ [ \ N"0\0## denote those eigenvectors among hk "k � 0\ [ [ [ \ N# which are Dn!

invariant ðand belonging to the subspace X"0\0# in the isotypic decomposition "A06#Ł[
As we have seen already\ the bifurcation equation reduces approximately to eqn "A18#\ that is\

rf½¦r2−=a=o � 9\

with r � zw1
0¦w1

1[ The remaining eqns "A7# for w"0\0# are evaluated to

F
k"w\ f½\ o# � e"0\0#
k w"0\0#

k ¦a"0\0#
k f½¦b"0\0#

k o

¦c00
k w1

0¦c01
k w0w1¦c11

k w1
1¦h[o[t[ � 9\ k � 0\ [ [ [ \ N "0\0#\ "A21#

where a"0\0#
k \ b"0\0#

k \ e"0\0#
k \ c00

k \ c01
k and c11

k "k � 0\ [ [ [ \ N"0\0## are some constants "b"0\0#
k depends on

the imperfection mode d#[
The group!equivariance of the whole set of eqn "A1# with respect to Dn is inherited to eqns

"A21#[ By eqns "A03# and "A04#\ the action of the elements c"1p:n# and s of the dihedral group
Dn on these equations and on the variables in the equations is expressed as below ]

c"1p:n# ] 0
w0

w11Ł 0
cos"1pj:n# −sin"1pj:n#

sin"1pj:n# cos"1pj:n# 1 0
w0

w11\ s ] 0
w0

w11Ł 0
w0

−w11\
c"1p:n#\ s ] F
kŁ F
k\ w"0\0#

k Ł w"0\0#
k [

By virtue of this\ the coe.cients in the remaining eqns "A21# must satisfy

c00
k � c11

k "0Ck#\ c01
k � 9[

Equation "A21#\ accordingly\ takes the form of

F
k"w\ f½\ o# � e"0\0#
k w"0\0#

k ¦a"0\0#
k f½¦b"0\0#

k o¦Ckr
1¦h[o[t[ � 9\ k � 0\ [ [ [ \ N "0\0#[ "A22#

By eqn "A22#\ the variable w"0\0#
k can be evaluated to

w"0\0#
k � −

0

e"0\0#
k

"a"0\0#
k f½¦Ckr

1#¦h[o[t[\ "A23#

where b"0\0#
k o is not included in this equation as it turns out to be a higher order term[ The

substitution of eqn "A23# into eqn "A20# results in

u½i� � Ri�f½¦Si�r
1¦h[o[t[\ "A24#

where

Ri� � − s
N "0\0#

k�0

h"0\0#
i�k a"0\0#

k

e"0\0#
k

\ Si� � − s
N "0\0#

k�0

h"0\0#
i�k Ck

e"0\0#
k

[

Note that eqn "A24# is exactly of the same form as eqn "19# for a Dn!invariant displacement of a
simple\ symmetric bifurcation point with hi�0 � 9[ In addition\ recall that the bifurcation eqn "A18#
for the double points is of the same form as eqn "00# for a simple point[ As a consequence of these\
all the results presented in Section 1[2 for a simple point apply to the double point with n¼ � n:m − 4
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as well[ It should be emphasized here that when ui� is not Dn!invariant\ these results are not
applicable[

Finally\ we mention the case of n¼ � 2 and n¼ � 3\ for which the orders of the terms in the
bifurcation eqn "A29# are evaluated to ]

r � O"o0:1#\ f½� O"o0:1#\ sin"u−c# � O"0# for n¼ � 2\

r � O"o0:2#\ f½� O"o1:2#\ sin"u−c# � O"0# for n¼ � 3[

For this reason\ the asymptotic curve expressed by eqn "A29# for n¼ � 2 or 3 is dependent on c\
and hence on the imperfection mode vector d even when o is in_nitesimal[ As we have seen\ for
n¼ � 2 or 3\ the bifurcation equation becomes far more complex than that for n¼ − 4 in eqn "A18#\
and\ in turn\ such pertinent power laws as those for n¼ − 4 are not applicable[
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